题目内容

6.如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧面PAD是边长为2的正三角形,PD⊥CD,E,F分别为PC,AD的中点.
(1)求证:平面CEF⊥平面ABCD;
(2)求三棱锥P-BDE的体积.

分析 (1)连结PF,由CD⊥AD,CD⊥PD得CD⊥平面PAD,故CD⊥PF,又PF⊥AD,故PF⊥平面ABCD,于是平面CEF⊥平面ABCD;
(2)由E是PC的中点得VP-BDE=$\frac{1}{2}$VP-BDC

解答 解:(1)连结PF,
∵△PAD是正三角形,∴PF⊥AD.
∵AD⊥CD,PD⊥CD,PD?平面PAD,AD?平面PAD,AD∩PD=D,
∴CD⊥平面PAD,∵PF?平面PAD,
∴CD⊥PF.
又∵AD?平面ABCD,CD?平面ABCD,AD∩CD=D,
∴PF⊥平面ABCD,∵PF?平面CEF,
∴平面CEF⊥平面ABCD.
(2)∵△PAD是边长为2的正三角形,四边形ABCD是边长为2的正方形,
∴PF=$\sqrt{3}$,BC=CD=2,
∴VP-BCD=$\frac{1}{3}{S}_{△BCD}•PF$=$\frac{1}{3}×\frac{1}{2}×{2}^{2}×\sqrt{3}$=$\frac{2\sqrt{3}}{3}$.
∵E是PC的中点,
∴VP-BDE=$\frac{1}{2}$VP-BDC=$\frac{\sqrt{3}}{3}$.

点评 本题考查了线面垂直,面面垂直的判定,棱锥的体积计算,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网