题目内容

设y=f(x)定义域R,对于给的正数k,定义函数fk(x)=
f(x)
 f(x)≤k
k
  f(x)>k
取函数f(x)=log2|x|,当k=
1
2
时,函数fk(x)的单调递增区间为______.
∵f(x)=log2|x|,k=
1
2

若f(x)≤K,则x∈[-
2
,0)∪(0,
2
]
若f(x)>K,则x∈(-∞,-
2
)∪(
2
,+∞)
fk(x)=
log2|x|,x∈[-
2
,0)∪(0
2
]
1
2
,x∈(-∞,-
2
)∪(
2
,+∞)

∵y=log2u在其定义域为恒为增函数,
u=|x|在区间(-∞,0)为减函数,在(0,+∞)上为增函数
∴函数fk(x)的单调递增区间为(0,
2
]

故答案为:(0,
2
]
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网