题目内容
.设动点到定点的距离比它到轴的距离大.
(Ⅰ)求动点的轨迹方程;
(Ⅱ)设过点的直线交曲线于两点,为坐标原点,求面积的最小值.
【解析】略
设动点到定点的距离比它到轴的距离大1,记点的轨迹为曲线.
(1)求点的轨迹方程;
(2)设圆过,且圆心在曲线上,是圆在轴上截得的弦,试探究当运动时,弦长是否为定值?为什么?
设动点到定点的距离比它到轴的距离大.记点的轨迹为曲线
(2)设圆过,且圆心在的轨迹上,是圆在轴上截得的弦,当运动时弦长是否为定值?请说明理由.
在直角坐标系中,设动点到定点的距离与到定直线的距离相等,记的轨迹为.又直线的一个方向向量且过点,与交于两点,求的长.
设动点 到定点的距离比到轴的距离大.记点的轨迹为曲线C.
(Ⅰ)求点的轨迹方程;
(Ⅱ)设圆M过,且圆心M在P的轨迹上,是圆M 在轴的截得的弦,当M 运动时弦长是否为定值?说明理由;
(Ⅲ)过作互相垂直的两直线交曲线C于G、H、R、S,求四边形面的最小值.