题目内容

20.某乡镇为了发展旅游行业,决定加强宣传,据统计,广告支出费x与旅游收入y(单位:万元)之间有如表对应数据:
x24568
y3040605070
(Ⅰ)求旅游收入y对广告支出费x的线性回归方程y=bx+a,若广告支出费为12万元,预测旅游收入;
(Ⅱ)在已有的五组数据中任意抽取两组,根据(Ⅰ)中的线性回归方程,求至少有一组数据其预测值与实际值之差的绝对值不超过5的概率.
参考公式:b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\stackrel{-2}{x}}$,a=$\overline{y}$-b$\overline{x}$,其中$\overline{\;}$$\overline{x}$,$\overline{y}$为样本平均值.
参考数据:$\sum_{i=1}^{5}{x}_{i}^{2}$=145,$\sum_{i=1}^{5}{y}_{i}^{2}$=13500,$\sum_{i=1}^{5}{x}_{i}{y}_{i}$=1380.

分析 (I)根据所给的数据先做出数据的平均数,即样本中心点,根据最小二乘法做出线性回归方程的系数,写出线性回归方程.把所给的广告费支出为12万元时,代入线性回归方程,可得对应的销售额.
(II)分别求出在已有的五组数据中任意抽取两组的情况总数,及至少有一组数据其预测值与实际值之差的绝对值不超过5的情况数,代入古典概型概率计算公式,可得答案.

解答 解:(Ⅰ)由题知,$\overline{x}$=5,$\overline{y}$=50,b=$\frac{1380-5×5×50}{145-5×{5}^{2}}$=6.5,a=50-6.5×5=17.5
∴y=6.5x+17.5
当x=12时,y=95.5;   …(6分)
(Ⅱ)对应的预测值分别为30.5,43.5,50,56.5,69.5,其中与实际值之差的绝对值不超过5的有3组,从五组数据中任取两组,共有10种不同的结果,其中满足“两组其预测值与实际值之差的绝对值都超过5”的有1种结果,∴P=1-$\frac{1}{10}$=$\frac{9}{10}$.…(13分)

点评 本题考查的知识点是古典概型概率计算公式,其中熟练掌握利用古典概型概率计算公式求概率的步骤,是解答的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网