题目内容
20.某乡镇为了发展旅游行业,决定加强宣传,据统计,广告支出费x与旅游收入y(单位:万元)之间有如表对应数据:| x | 2 | 4 | 5 | 6 | 8 |
| y | 30 | 40 | 60 | 50 | 70 |
(Ⅱ)在已有的五组数据中任意抽取两组,根据(Ⅰ)中的线性回归方程,求至少有一组数据其预测值与实际值之差的绝对值不超过5的概率.
参考公式:b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\stackrel{-2}{x}}$,a=$\overline{y}$-b$\overline{x}$,其中$\overline{\;}$$\overline{x}$,$\overline{y}$为样本平均值.
参考数据:$\sum_{i=1}^{5}{x}_{i}^{2}$=145,$\sum_{i=1}^{5}{y}_{i}^{2}$=13500,$\sum_{i=1}^{5}{x}_{i}{y}_{i}$=1380.
分析 (I)根据所给的数据先做出数据的平均数,即样本中心点,根据最小二乘法做出线性回归方程的系数,写出线性回归方程.把所给的广告费支出为12万元时,代入线性回归方程,可得对应的销售额.
(II)分别求出在已有的五组数据中任意抽取两组的情况总数,及至少有一组数据其预测值与实际值之差的绝对值不超过5的情况数,代入古典概型概率计算公式,可得答案.
解答 解:(Ⅰ)由题知,$\overline{x}$=5,$\overline{y}$=50,b=$\frac{1380-5×5×50}{145-5×{5}^{2}}$=6.5,a=50-6.5×5=17.5
∴y=6.5x+17.5
当x=12时,y=95.5; …(6分)
(Ⅱ)对应的预测值分别为30.5,43.5,50,56.5,69.5,其中与实际值之差的绝对值不超过5的有3组,从五组数据中任取两组,共有10种不同的结果,其中满足“两组其预测值与实际值之差的绝对值都超过5”的有1种结果,∴P=1-$\frac{1}{10}$=$\frac{9}{10}$.…(13分)
点评 本题考查的知识点是古典概型概率计算公式,其中熟练掌握利用古典概型概率计算公式求概率的步骤,是解答的关键.
练习册系列答案
相关题目
11.某初级中学有七、八、九三个年级,每个年级男、女生人数如表:
按年级使用分层抽样的方法,在这所学校抽取学生50名,其中有七年级学生10名.
(1)求x的值;
(2)用随机抽样的方法从八年级抽取8名学生,经测试他们的体能得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2把这8名学生的体能得分看成一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.4的概率.
| 七年级 | 八年级 | 九年级 | |
| 男生 | 100 | 150 | x |
| 女生 | 300 | 450 | 600 |
(1)求x的值;
(2)用随机抽样的方法从八年级抽取8名学生,经测试他们的体能得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2把这8名学生的体能得分看成一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.4的概率.
11.已知函数f(x)=$\left\{\begin{array}{l}{2^x},\;x>0\;\\-{2^{-x}},\;x<0\;\end{array}\right.$那么该函数是( )
| A. | 奇函数,且在定义域内单调递减 | |
| B. | 奇函数,且在定义域内单调递增 | |
| C. | 非奇非偶函数,且在(0,+∞)上单调递增 | |
| D. | 偶函数,且在(0,+∞)上单调递增 |