题目内容

公差不为零的等差数列{an}中,已知其前n项和为Sn,若S8=S5+45,且a4,a7,a12成等比数列
(Ⅰ)求数列{an}的通项an
(Ⅱ)当bn=
1
Sn
时,求数列{bn}的前n和Tn
(Ⅰ)由S8=S5+45得,S8-S5=45,
∴a6+a7+a8=45,即3a7=45,得a7=15,
又∵a72=a4a12,设公差为d≠0,
a1+6d=15
(a1+6d)2=(a1+3d)(a1+11d)

解得
a1=3
d=2

∴an=2n+1,
(Ⅱ)由(Ⅰ)得Sn=
n(3+2n+1)
2
=n(n+2)

bn=
1
n(n+2)
=
1
2
(
1
n
-
1
n+2
)

Tn=b1+b2+b3+…+bn
=
1
2
[(
1
1
-
1
3
)+(
1
2
-
1
4
)+…+(
1
n
-
1
n+2
)]
=
1
2
(
1
1
+
1
2
-
1
n+1
-
1
n+2
)

Tn=
3
4
-
2n+3
2(n+1)(n+2)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网