题目内容

8.已知双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左、右焦点与虚轴的一个端点构成一个角为120°的三角形,则双曲线C的离心率为(  )
A.$\frac{{\sqrt{5}}}{2}$B.$\frac{{\sqrt{6}}}{2}$C.$\sqrt{3}$D.$\sqrt{5}$

分析 根据题意,设虚轴的一个端点M(0,b),结合焦点F1、F2的坐标和∠F1MF2=120°,得到c=$\sqrt{3}$b,再用平方关系化简得c=$\frac{\sqrt{6}}{2}$a,根据离心率计算公式即可得到该双曲线的离心率.

解答 解:双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$,
可得虚轴的一个端点M(0,b),F1(-c,0),F2(-c,0),
设∠F1MF2=120°,得c=$\sqrt{3}$b,
平方得c2=3b2=3(c2-a2),
可得3a2=2c2
即c=$\frac{\sqrt{6}}{2}$a,
得离心率e=$\frac{c}{a}$=$\frac{\sqrt{6}}{2}$.
故选:B.

点评 本题给出双曲线两个焦点对虚轴一端的张角为120度,求双曲线的离心率.着重考查了双曲线的标准方程和简单几何性质等知识,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网