ÌâÄ¿ÄÚÈÝ
Èçͼ£¬Ä³Ð¡Çø×¼±¸ÂÌ»¯Ò»¿éÖ±¾¶ÎªABµÄ°ëÔ²Ðοյأ¬µãCÔÚ°ëÔ²»¡ÉÏ£¬°ëÔ²ÄÚ¡÷ABCÍâµÄµØ·½Öֲݣ¬¡÷ABCµÄÄÚ½ÓÕý·½ÐÎPQRSÄÚ²¿ÎªÒ»Ë®³Ø£¬ÆäÓàµØ·½ÖÖ»¨£¬ÈôAB=2a£¬¡ÏCAB=¦È£¬Éè¡÷ABCµÄÃæ»ýΪS1£¬Õý·½ÐÎPQRSµÄ±ß³¤Îªx£¬Ãæ»ýΪS2£¬½«±ÈÖµ
³ÆÎª¡°¹æ»®ºÏÀí¶È¡±£®
£¨1£©ÇóÖ¤£ºx=
£®
£¨2£©µ±aΪ¶¨Öµ£¬¦È±ä»¯ÊÇ£¬Ç󡰹滮ºÏÀí¶È¡±µÄ×îСֵ¼°´Ëʱ½Ç¦ÈµÄ´óС£®
| S1 |
| S2 |
£¨1£©ÇóÖ¤£ºx=
| 2asin2¦È |
| 2+sin2¦È |
£¨2£©µ±aΪ¶¨Öµ£¬¦È±ä»¯ÊÇ£¬Ç󡰹滮ºÏÀí¶È¡±µÄ×îСֵ¼°´Ëʱ½Ç¦ÈµÄ´óС£®
£¨1£©ÔÚ¡÷ABCÖУ¬AB=2a£¬¡ÏCAB=¦È
ËùÒÔAC=2acos¦È£¬BC=2asin¦È
ÒòΪÕý·½ÐÎPQRSµÄ±ß³¤Îªx
ËùÒÔAC=
+xcos¦È£¬2acos¦È=
+xcos¦È£¬
¡àx=
£¨2£©ÒòΪ¡÷ABCÖУ¬AC=2acos¦È£¬BC=2asin¦È
ËùÒÔs1=4a2sin¦Ècos¦È=2a2sin2¦È
Òòx=
ËùÒÔs2=
Òò´Ë¡°¹æ»®ºÏÀí¶È¡±
=
£¬¦È¡Ê(0£¬
)
=
=
(
+sin2¦È+4)¡Ý
µ±ÇÒ½öµ±sin2¦È=1¼´¦È=
ʱȡµÃ×îСֵ
ËùÒÔAC=2acos¦È£¬BC=2asin¦È
ÒòΪÕý·½ÐÎPQRSµÄ±ß³¤Îªx
ËùÒÔAC=
| x |
| sin¦È |
| x |
| sin¦È |
¡àx=
| 2asin2¦È |
| 2+sin2¦È |
£¨2£©ÒòΪ¡÷ABCÖУ¬AC=2acos¦È£¬BC=2asin¦È
ËùÒÔs1=4a2sin¦Ècos¦È=2a2sin2¦È
Òòx=
| 2asin2¦È |
| 2+sin2¦È |
ËùÒÔs2=
| 4a2(sin2¦È)2 |
| (2+sin2¦È)2 |
Òò´Ë¡°¹æ»®ºÏÀí¶È¡±
| s1 |
| s2 |
| (2+sin2¦È)2 |
| 2sin2¦È |
| ¦Ð |
| 2 |
| s1 |
| s2 |
| (2+sin2¦È)2 |
| 2sin2¦È |
| 1 |
| 2 |
| 4 |
| sin2¦È |
| 9 |
| 2 |
µ±ÇÒ½öµ±sin2¦È=1¼´¦È=
| ¦Ð |
| 4 |
| 9 |
| 2 |
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿