题目内容
在数列{an}中,a1=1,3anan-1+an-an-1=0(n≥2)
(Ⅰ)证明:{
}是等差数列;
(Ⅱ)求数列{an}的通项;
(Ⅲ)若λan+
≥λ对任意n≥2的整数恒成立,求实数λ的取值范围.
(Ⅰ)证明:{
| 1 |
| an |
(Ⅱ)求数列{an}的通项;
(Ⅲ)若λan+
| 1 |
| an+1 |
(Ⅰ)将3anan-1+an-an-1=0(n≥2)整理得:
-
=3(n≥2),
所以{
}是以1为首项,3为公差的等差数列.
(Ⅱ)由(Ⅰ)可得:
=1+3(n-1)=3n-2,所以an=
.
(Ⅲ)若λan+
≥λ恒成立,即
+3n+1≥λ恒成立,整理得:λ≤
.
令cn=
,
则可得 cn+1-cn=
-
=
.
因为n≥2,所以
>0,即{cn}为单调递增数列,所以c2最小,c2=
,
所以λ的取值范围为(-∞,
].
| 1 |
| an |
| 1 |
| an-1 |
所以{
| 1 |
| an |
(Ⅱ)由(Ⅰ)可得:
| 1 |
| an |
| 1 |
| 3n-2 |
(Ⅲ)若λan+
| 1 |
| an+1 |
| λ |
| 3n-2 |
| (3n+1)(3n-2) |
| 3(n-1) |
令cn=
| (3n+1)(3n-2) |
| 3(n-1) |
则可得 cn+1-cn=
| (3n+4)(3n+1) |
| 3n |
| (3n+1)(3n-2) |
| 3(n-1) |
| (3n+1)(3n-4) |
| 3n(n-1) |
因为n≥2,所以
| (3n+1)(3n-4) |
| 3n(n-1) |
| 28 |
| 3 |
所以λ的取值范围为(-∞,
| 28 |
| 3 |
练习册系列答案
相关题目