题目内容
已知:asinx+bcosx=0 ①,Asin2x+Bcos2x=C ②,其中a,b不同时为0,求证:2abA+(b2-a2)B+(a2+b2)C=0
证明:设siny=-
,cosy=
则①可写成cosysinx-sinycosx=0,
∴sin(x-y)=0∴x-y=kπ(k为整数),
∴x=y+kπ
又sin2x=sin2(y+kπ)=sin2y=2sinycosy=-
cos2x=cos2y=cos2y-sin2y=
代入②,
得-
+
=C,
∴2abA+(b2-a2)B+(a2+b2)C=0.
| b | ||
|
| a | ||
|
则①可写成cosysinx-sinycosx=0,
∴sin(x-y)=0∴x-y=kπ(k为整数),
∴x=y+kπ
又sin2x=sin2(y+kπ)=sin2y=2sinycosy=-
| 2ab |
| a2+b2 |
cos2x=cos2y=cos2y-sin2y=
| a2-b2 |
| a2+b2 |
得-
| 2abA |
| a2+b2 |
| (a2-b2)B |
| a2+b2 |
∴2abA+(b2-a2)B+(a2+b2)C=0.
练习册系列答案
相关题目