题目内容
设,则 .
(本小题满分12分)一个盒子中装有大小相同的小球个,在小球上分别标有,,,,的号码,已知从盒子中随机地取出个球,个球的号码最大值为的概率为.
(1)求的值;
(2)现从盒子中随机地取出个球,记所取个球的号码中,连续自然数的个数的最大值为随机变量(如取时,;取时,或取时,;取时,).
求的值;
求随机变量的分布列及期望.
.
某企业共有职工627人,总裁为了了解下属某部门对本企业职工的服务情况,决定抽取10%的职工进行问卷调查,如果采用系统抽样方法抽取这一样本,则应分成 段抽取.
已知定义在上的函数f(x)同时满足下列三个条件:
①f(3)=﹣1;②对任意x、y∈都有f(xy)=f(x)+f(y);③x>1时,f(x)<0.
(1)求f(9)、的值;
(2)证明:函数f(x)在上为减函数;
(3)解关于x的不等式f(6x)<f(x﹣1)﹣2.
已知样本9,10,11,x,y的平均数是10,方差是2,则xy= .
已知抛物线的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若,则( )
A. B. C.3 D.6
已知,表示两个不同的平面,为平面内的一条直线,则“”是“”的 条件.(横线上填“充分不必要”,“必要不充分条件”,“充要”,“既不充分也不必要”中的一个)
设表示两条不同的直线,表示两个不同的平面,下列命题中真命题是( )
A、若,∥,则∥
B、若,∥,则∥
C、若∥,,则
D、若∥,,则∥