题目内容

(2012•眉山二模)数列{an}的前n项和为Sn,且a1=1,an+1=2Sn+n+1(n≥1).
(1)求数列{an}的通项公式;
(2)设等差数列{bn}各项均为正数,满足b1+b2+b3=18,且a1+b1+2,a2+b2,a3+b3-3成等比数列,证明:
1
a2b2
+
1
a3b3
+…+
1
anbn
1
6
分析:(1)由
an+1=2Sn+n+1
an=2Sn-1+n
,得an+1=3an+n,n≥2,故数列{an+
1
2
}是首项为
3
2
,公比为3的等比数列.由此能求出数列{an}的通项公式.
(2)由b1+b2+b3=18,得b2=6,设{bn}的公差为d,且d>0,得(9-d)(16+d)=100,故bn=4n-2,(n∈N*).再由
1
anbn
=
1
(2n-1)(3n-1)
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)
.由此能够证明
1
a2b2
+
1
a3b3
+…+
1
anbn
1
6
解答:解:(1)由
an+1=2Sn+n+1
an=2Sn-1+n

得an+1=3an+n,n≥2,
∴an+1+
1
2
=3(an+
1
2
)
,(3分)
a2+
1
2
=4+
1
2
=3(a1+
1
2
)
也满足上式,
∴数列{an+
1
2
}是首项为
3
2
,公比为3的等比数列.
an+
1
2
=
3
2
×3n-1=
3n
2

an=
1
2
(3n-1),(n∈N*)

(2)∵等差数列{bn}各项均为正数,满足b1+b2+b3=18,
∴b2=6,设{bn}的公差为d,且d>0,
依题意可得9-d,10,16+d成等比数例,
∴(9-d)(16+d)=100,解得d=4,或d=-11,(舍去),
bn=4n-2,(n∈N*).(8分)
∴当n≥2时,
1
anbn
=
1
(2n-1)(3n-1)
1
(2n-1)(2n+1)

=
1
2
(
1
2n-1
-
1
2n+1
)

1
a2b2
+
1
a3b3
+…+
1
anbn
1
2
(
1
3
-
1
5
+
1
5
-
1
7
+…+
1
2n-1
-
1
2n+1
)

=
1
2
(
1
3
-
1
2n+1
)
1
2
×
1
3
=
1
6

1
a2b2
+
1
a3b3
+…+
1
anbn
1
6
.(12分)
点评:本题考查数列通项公式的求法,考查不等式的证明.解题时要认真审题,注意等差数列、等比数列的前n基和公式、通项公式的灵活运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网