题目内容
(2012•眉山二模)数列{an}的前n项和为Sn,且a1=1,an+1=2Sn+n+1(n≥1).
(1)求数列{an}的通项公式;
(2)设等差数列{bn}各项均为正数,满足b1+b2+b3=18,且a1+b1+2,a2+b2,a3+b3-3成等比数列,证明:
+
+…+
<
.
(1)求数列{an}的通项公式;
(2)设等差数列{bn}各项均为正数,满足b1+b2+b3=18,且a1+b1+2,a2+b2,a3+b3-3成等比数列,证明:
| 1 |
| a2b2 |
| 1 |
| a3b3 |
| 1 |
| anbn |
| 1 |
| 6 |
分析:(1)由
,得an+1=3an+n,n≥2,故数列{an+
}是首项为
,公比为3的等比数列.由此能求出数列{an}的通项公式.
(2)由b1+b2+b3=18,得b2=6,设{bn}的公差为d,且d>0,得(9-d)(16+d)=100,故bn=4n-2,(n∈N*).再由
=
<
=
(
-
).由此能够证明
+
+…+
<
.
|
| 1 |
| 2 |
| 3 |
| 2 |
(2)由b1+b2+b3=18,得b2=6,设{bn}的公差为d,且d>0,得(9-d)(16+d)=100,故bn=4n-2,(n∈N*).再由
| 1 |
| anbn |
| 1 |
| (2n-1)(3n-1) |
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| a2b2 |
| 1 |
| a3b3 |
| 1 |
| anbn |
| 1 |
| 6 |
解答:解:(1)由
,
得an+1=3an+n,n≥2,
∴an+1+
=3(an+
),(3分)
又a2+
=4+
=3(a1+
)也满足上式,
∴数列{an+
}是首项为
,公比为3的等比数列.
∴an+
=
×3n-1=
,
∴an=
(3n-1),(n∈N*).
(2)∵等差数列{bn}各项均为正数,满足b1+b2+b3=18,
∴b2=6,设{bn}的公差为d,且d>0,
依题意可得9-d,10,16+d成等比数例,
∴(9-d)(16+d)=100,解得d=4,或d=-11,(舍去),
∴bn=4n-2,(n∈N*).(8分)
∴当n≥2时,
=
<
=
(
-
).
∴
+
+…+
<
(
-
+
-
+…+
-
)
=
(
-
)<
×
=
.
∴
+
+…+
<
.(12分)
|
得an+1=3an+n,n≥2,
∴an+1+
| 1 |
| 2 |
| 1 |
| 2 |
又a2+
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴数列{an+
| 1 |
| 2 |
| 3 |
| 2 |
∴an+
| 1 |
| 2 |
| 3 |
| 2 |
| 3n |
| 2 |
∴an=
| 1 |
| 2 |
(2)∵等差数列{bn}各项均为正数,满足b1+b2+b3=18,
∴b2=6,设{bn}的公差为d,且d>0,
依题意可得9-d,10,16+d成等比数例,
∴(9-d)(16+d)=100,解得d=4,或d=-11,(舍去),
∴bn=4n-2,(n∈N*).(8分)
∴当n≥2时,
| 1 |
| anbn |
| 1 |
| (2n-1)(3n-1) |
| 1 |
| (2n-1)(2n+1) |
=
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴
| 1 |
| a2b2 |
| 1 |
| a3b3 |
| 1 |
| anbn |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 6 |
∴
| 1 |
| a2b2 |
| 1 |
| a3b3 |
| 1 |
| anbn |
| 1 |
| 6 |
点评:本题考查数列通项公式的求法,考查不等式的证明.解题时要认真审题,注意等差数列、等比数列的前n基和公式、通项公式的灵活运用.
练习册系列答案
相关题目