题目内容

4.不等式sinx≥$\frac{\sqrt{3}}{2}$的解集为{x|2kπ+$\frac{π}{3}$≤x≤2kπ+$\frac{2π}{3}$,k∈Z}.

分析 由特殊角的三角函数值和正弦函数的图象可得.

解答 解:∵sin$\frac{2π}{3}$=sin$\frac{π}{3}$=$\frac{\sqrt{3}}{2}$,∴结合正弦函数的图象可得
不等式sinx≥$\frac{\sqrt{3}}{2}$的解集为{x|2kπ+$\frac{π}{3}$≤x≤2kπ+$\frac{2π}{3}$,k∈Z}
故答案为:{x|2kπ+$\frac{π}{3}$≤x≤2kπ+$\frac{2π}{3}$,k∈Z}

点评 本题考查正弦函数的图象和性质,属基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网