题目内容
如图,圆柱的轴截面
为正方形,
、
分别为上、下底面的圆心,
为上底面圆周上一点,已知
,圆柱侧面积等于
.
(1)求圆柱的体积
;
(2)求异面直线
与
所成角
的大小.![]()
(1)
;(2)
.
解析试题分析:(1)了解圆柱的概念,掌握圆柱体积和侧面积计算公式即能解决此题;(2)求异面直线所成角,经常采用平移法,即通过平移,将异面直线所成角转化为相交直线所成角来解决问题,此题可通过平移
至
,转化直线
与
所成角来处理.
试题解析:(1)设圆柱的底面半径为
,由题意,
![]()
. 2分
. 6分
(2)连接
,由于![]()
,![]()
![]()
即为异面直线
与
所成角 (或其补角), 8分
过点
作圆柱的母线交下底面于点
,连接
,![]()
由圆柱的性质,得
为直角三角形,四边形
为矩形,
,
由
,由等角定理,得
,所以
,可解得
,
在
中,
,
由余弦定理,
13分
异面直线
与
所成角
. 14分
考点:1.圆柱的体积与表面积;2.异面直线所成角.
练习册系列答案
相关题目