题目内容
设a,b,c分别为△ABC的内角A,B,C的对边,
=(cos
,sin
),
=(cos
,-sin
),
与
的夹角为
(1)求角C的大小;
(2)已知c=
,△ABC的面积S=
,求a+b的值.
| m |
| C |
| 2 |
| C |
| 2 |
| n |
| C |
| 2 |
| C |
| 2 |
| m |
| n |
| π |
| 3 |
(1)求角C的大小;
(2)已知c=
| 7 |
| 2 |
3
| ||
| 2 |
(1)由条件得
•
=cos2
-sin2
=cosC,
又
•
=|
||
|cos
=
,
∴cosC=
,0<C<π,
因此C=
.
(2)S△=
absinC=
ab=
,
∴ab=6.
由余弦定理得c2=a2+b2-2abcosC=(a+b)2-2ab-2abcos
,
得出:(a+b)2=
,
∴a+b=
.
| m |
| n |
| C |
| 2 |
| C |
| 2 |
又
| m |
| n |
| m |
| n |
| π |
| 3 |
| 1 |
| 2 |
∴cosC=
| 1 |
| 2 |
因此C=
| π |
| 3 |
(2)S△=
| 1 |
| 2 |
| ||
| 4 |
3
| ||
| 2 |
∴ab=6.
由余弦定理得c2=a2+b2-2abcosC=(a+b)2-2ab-2abcos
| π |
| 3 |
得出:(a+b)2=
| 121 |
| 4 |
∴a+b=
| 11 |
| 2 |
练习册系列答案
相关题目