题目内容
在△ABC中有如下结论:“若点M为△ABC的重心,则| MA |
| MB |
| MC |
| 0 |
| MA |
| MB |
| ||
| 3 |
| MC |
| 0 |
分析:由题意得,(a-
c)
+(b-
c)
=
,∵
与
不共线,∴a-
c=b-
c=0,余弦定理可求得cosA,从而求得 A 和△ABC面积S.
| ||
| 3 |
| MA |
| ||
| 3 |
| MB |
| 0 |
| MA |
| MB |
| ||
| 3 |
| ||
| 3 |
解答:解:由 a
+b
+
c
=a
+b
+
c(-
-
)=(a-
c)
+(b-
c)
=
,
∵
与
不共线,∴a-
c=b-
c=0,
∴a=b=
c,△ABC中,由余弦定理可求得cosA=
,∴A=
.
若a=3,则 b=3,c=3
,△ABC面积S=
bcsinA=
×3×3
×
=
,
故答案为
;
.
| MA |
| MB |
| ||
| 3 |
| MC |
| MA |
| MB |
| ||
| 3 |
| MA |
| MB |
| ||
| 3 |
| MA |
| ||
| 3 |
| MB |
| 0 |
∵
| MA |
| MB |
| ||
| 3 |
| ||
| 3 |
∴a=b=
| ||
| 3 |
| ||
| 2 |
| π |
| 6 |
若a=3,则 b=3,c=3
| 3 |
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 1 |
| 2 |
9
| ||
| 4 |
故答案为
| π |
| 6 |
9
| ||
| 4 |
点评:本题考查两个向量的运算,余弦定理的应用,求得 a=b=
c,是解题的难点和关键.
| ||
| 3 |
练习册系列答案
相关题目