题目内容

如图,已知三棱柱A1B1C1ABC的底面是边长为2的正三角形,侧棱A1AABAC均成45°角,且A1EB1BEA1FCC1F.

(1)求点A到平面B1BCC1的距离;

(2)当AA1多长时,点A1到平面ABC与平面B1BCC1的距离相等.

(1)所求距离为2     (2)当AA1=时满足条件.


解析:

(1)∵BB1A1ECC1A1FBB1CC1

BB1⊥平面A1EF

即面A1EF⊥面BB1C1C

在Rt△A1EB1中,

∵∠A1B1E=45°,A1B1=a

A1E=a,同理A1F=a,又EF=a,∴A1E=a

同理A1F=a,又EF=a

∴△EA1F为等腰直角三角形,∠EA1F=90°

A1A1NEF,则NEF中点,且A1N⊥平面BCC1B1

A1N为点A1到平面BCC1B1的距离

A1N=

又∵AA1∥面BCC1BA到平面BCC1B1的距离为

a=2,∴所求距离为2

(2)设BCB1C1的中点分别为DD1,连结ADDD1A1D1,则DD1必过点N,易证ADD1A1为平行四边形.

B1C1D1D,B1C1A1N

B1C1⊥平面ADD1A1

BC⊥平面ADD1A1

得平面ABC⊥平面ADD1A1,过A1A1M⊥平面ABC,交ADM

A1M=A1N,又∠A1AM=∠A1D1N,∠AMA1=∠A1ND1=90°

∴△AMA1≌△A1ND1,∴AA1=A1D1=,即当AA1=时满足条件.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网