题目内容
16.已知f(α)=$\frac{sin(2π-α)cos(π+α)cos(\frac{π}{2}+α)cos(\frac{11π}{2}-α)}{cos(π-α)sin(3π-α)sin(-π-α)sin(\frac{9π}{2}+α)}$.(1)利用诱导公式化简f(α);
(2)设f(α)=-2,计算:①$\frac{sinα+2cosα}{5cosα-2sinα}$;②sinαcosα.
分析 (1)利用诱导公式化简f(α)即可.
(2)求出正切函数值,然后化简所求的表达式为正切函数的形式,然后求解即可.
解答 解:(1)f(α)=$\frac{sin(2π-α)cos(π+α)cos(\frac{π}{2}+α)cos(\frac{11π}{2}-α)}{cos(π-α)sin(3π-α)sin(-π-α)sin(\frac{9π}{2}+α)}$
=$\frac{sinαcosαsinαsinα}{-cosαsinαsinαcosα}$
=-tanα.
(2)f(α)=-2,可得tanα=2
①$\frac{sinα+2cosα}{5cosα-2sinα}$
=$\frac{tanα+2}{5-2tanα}$=4;
②sinαcosα=$\frac{tanα}{ta{n}^{2}α+1}$=$\frac{2}{5}$.
点评 本题考查三角函数化简求值,同角三角函数基本关系式的应用,考查计算能力.
练习册系列答案
相关题目
6.已知两组相关数据如表,其线性回归方程为$\stackrel{∧}{y}$=x+$\frac{6}{5}$,则表中缺失的数据m=11.
| x | 5 | 7 | 9 | 11 | 13 |
| y | 6 | 8 | m | 12 | 14 |
11.已知函数f(x)=-tan(2x-$\frac{3π}{4}$),则( )
| A. | f(x)在($\frac{kπ}{2}$+$\frac{π}{8}$,$\frac{kπ}{2}$+$\frac{5π}{8}$)(k∈Z)上单调递减 | |
| B. | f(x)在($\frac{kπ}{2}$+$\frac{π}{8}$,$\frac{kπ}{2}$+$\frac{5π}{8}$)(k∈Z)上单调递增 | |
| C. | f(x)在(kπ+$\frac{π}{8}$,kπ+$\frac{5π}{8}$)(k∈Z)上单调递减 | |
| D. | f(x)在[kπ+$\frac{π}{8}$,kπ+$\frac{5π}{8}$](k∈Z)上单调递增 |
8.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一个焦点为F(2,0),且双曲线的渐近线与圆(x-2)2+y2=3相切,则双曲线的方程为( )
| A. | x2-$\frac{{y}^{2}}{3}$=1 | B. | $\frac{{x}^{2}}{3}$-y2=1 | C. | $\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{2}$=1 | D. | $\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{3}$=1 |