题目内容
已知x,y是实数,则“x2>y2”是“x<y<0”的
- A.充分而不必要条件
- B.必要而不充分条件
- C.充分必要条件
- D.既不充分也不必要条件
B
分析:根据不等式的基本性质,我们分别判断“x2>y2”?“x<y<0”与“x<y<0”?“x2>y2”的真假,进而根据必要条件、充分条件与充要条件的判断方法,即可得到答案.
解答:当“x2>y2”时,“x<y<0”不一定成立,
即“x2>y2”?“x<y<0”为假命题;
即“x2>y2”是“x<y<0”的不充分条件;
而当“x<y<0”时,“x2>y2”一定成立
即“x<y<0”?“x2>y2”为真命题;
即“x2>y2”是“x<y<0”的必要条件;
即“x2>y2”是“x<y<0”的必要不充分条件;
故选B
点评:本题考查的知识点是必要条件、充分条件与充要条件的判断,其中利用不等式的基本性质,判断出“x2>y2”?“x<y<0”与“x<y<0”?“x2>y2”的真假,是解答本题的关键.
分析:根据不等式的基本性质,我们分别判断“x2>y2”?“x<y<0”与“x<y<0”?“x2>y2”的真假,进而根据必要条件、充分条件与充要条件的判断方法,即可得到答案.
解答:当“x2>y2”时,“x<y<0”不一定成立,
即“x2>y2”?“x<y<0”为假命题;
即“x2>y2”是“x<y<0”的不充分条件;
而当“x<y<0”时,“x2>y2”一定成立
即“x<y<0”?“x2>y2”为真命题;
即“x2>y2”是“x<y<0”的必要条件;
即“x2>y2”是“x<y<0”的必要不充分条件;
故选B
点评:本题考查的知识点是必要条件、充分条件与充要条件的判断,其中利用不等式的基本性质,判断出“x2>y2”?“x<y<0”与“x<y<0”?“x2>y2”的真假,是解答本题的关键.
练习册系列答案
相关题目