ÌâÄ¿ÄÚÈÝ
18£®ÒÑÖª¼«×ø±êϵµÄ¼«µãÓëÆ½ÃæÖ±½Ç×ø±êϵµÄÔµãÖØºÏ£¬¼«ÖáÓëxÖáÕý°ëÖáÖØºÏ£¬ÇÒ³¤¶Èµ¥Î»Ïàͬ£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=t-1}\\{y=t+1}\end{array}}$£¨tΪ²ÎÊý£©£¬Ô²CµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2$\sqrt{2}sin£¨¦È-\frac{¦Ð}{4}£©$£®£¨1£©°ÑÔ²·½³Ì»¯³ÉÔ²µÄ±ê×¼·½³Ì²¢ÇóÔ²Ðĵļ«×ø±ê£»
£¨2£©ÉèÖ±ÏßlÓëÔ²CÏཻÓÚM£¬NÁ½µã£¬Çó¡÷MONµÄÃæ»ý£¨OÎª×ø±êԵ㣩£®
·ÖÎö £¨1£©ÀûÓÃÁ½½Ç²îµÄÕýÏÒ¹«Ê½»¯¼ò$¦Ñ=2\sqrt{2}sin£¨¦È-\frac{¦Ð}{4}£©$£¬Çó³öÔ²CµÄ±ê×¼·½³ÌºÍÔ²ÐÄÖ±½Ç×ø±ê£¬ÔÙÇó³öÔ²Ðĵļ«×ø±ê£»
£¨2£©½«$\left\{{\begin{array}{l}{x=t-1}\\{y=t+1}\end{array}}\right.$´úÈëÔ²µÄ±ê×¼·½³ÌÇó³ötµÄÖµ£¬¿ÉµÃÖ±ÏßlÓëÔ²CÏཻµãM£¬NµÄ×ø±ê£¬ÓÉÁ½µãÖ®¼äµÄ¾àÀ빫ʽÇó³ö|MN|£¬Çó³öÖ±ÏßlµÄÆÕͨ·½³Ì£¬Óɵ㵽ֱÏߵľàÀ빫ʽÇó³öԵ㵽ֱÏßlµÄ¾àÀ룬ÔÙÇó³ö¡÷MONµÄÃæ»ý£®
½â´ð ½â£º£¨1£©ÓÉÌâÒâµÃ$¦Ñ=2\sqrt{2}sin£¨¦È-\frac{¦Ð}{4}£©$=2sin¦È-2cos¦È£¬
¡à¦Ñ2=2¦Ñsin¦È-2¦Ñcos¦È£¬ÔòÆÕͨ·½³ÌΪ£º£¨x+1£©2+£¨y-1£©2=2£¬
ÔòÔ²ÐÄ×ø±êÊÇ£¨-1£¬1£©£¬
¡àÔ²Ðĵļ«×ø±êΪ$£¨\sqrt{2}£¬\frac{3¦Ð}{4}£©$£»£¨5·Ö£©
£¨2£©½«$\left\{{\begin{array}{l}{x=t-1}\\{y=t+1}\end{array}}\right.$´úÈ루x+1£©2+£¨y-1£©2=2£¬µÃt=¡À1£¬
ËùÒÔÖ±ÏßlÓëÔ²CµÄ½»µãM£¨0£¬2£©¡¢N£¨-2£¬0£©£¬
Ôò|MN|=$\sqrt{£¨0+2£©^{2}+£¨2-0£©^{2}}$=$2\sqrt{2}$£¬
ÓÉ$\left\{{\begin{array}{l}{x=t-1}\\{y=t+1}\end{array}}\right.$µÃ£¬Ö±ÏßlµÄ·½³ÌΪx-y+2=0£¬
ËùÒÔԵ㵽ֱÏßlµÄ¾àÀëΪ$\frac{|0-0+2|}{\sqrt{2}}$=$\sqrt{2}$£¬
ËùÒÔ¡÷MONµÄÃæ»ýS=$\frac{1}{2}¡Á2\sqrt{2}¡Á\sqrt{2}$=2 £¨10·Ö£©
µãÆÀ ±¾Ì⿼²é¼«×ø±ê·½³Ì¡¢²ÎÊý·½³ÌÓëÆÕͨ·½³ÌÖ®¼äµÄת»¯£¬Á½½Ç²îµÄÕýÏÒ¹«Ê½£¬Á½µãÖ®¼ä¡¢µãµ½Ö±ÏߵľàÀ빫ʽµÈ£¬ÊôÓÚÖеµÌ⣮
| A£® | ÏòÓÒÆ½ÒÆ$\frac{¦Ð}{12}$¸öµ¥Î» | B£® | Ïò×óÆ½ÒÆ$\frac{¦Ð}{12}$¸öµ¥Î» | ||
| C£® | ÏòÓÒÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î» | D£® | Ïò×óÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î» |
| A£® | $\frac{7}{25}$ | B£® | -$\frac{7}{25}$ | C£® | $\frac{3}{5}$ | D£® | -$\frac{3}{5}$ |
| A£® | £¨-1£¬0£© | B£® | £¨-1£¬-2£© | C£® | £¨-1£¬2£© | D£® | £¨1£¬-2£© |
| A£® | 16 | B£® | 54 | C£® | -24 | D£® | -18 |