题目内容

4.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow{b}$|=1,$\overrightarrow{a}$•$\overrightarrow{b}$=-1,且$\overrightarrow{a}$-$\overrightarrow{c}$与$\overrightarrow{b}$-$\overrightarrow{c}$的夹角为$\frac{π}{4}$,则|$\overrightarrow{c}$|的最大值为(  )
A.$\sqrt{10}$B.2$\sqrt{2}$C.$\sqrt{5}$D.4

分析 $\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,$\overrightarrow{OC}$=$\overrightarrow{c}$,利用平面向量的数量积与夹角公式,结合正弦定理,即可求出|$\overrightarrow{c}$|的最大值.

解答 解:设$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,$\overrightarrow{OC}$=$\overrightarrow{c}$.
∵平面向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow{b}$|=1,$\overrightarrow{a}$•$\overrightarrow{b}$=-1,
∴cos<$\overrightarrow{a}$$\overrightarrow{b}$>=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}|×|\overrightarrow{b}|}$=$\frac{-1}{\sqrt{2}×1}$=-$\frac{\sqrt{2}}{2}$,
∴<$\overrightarrow{a}$$\overrightarrow{b}$>=$\frac{3π}{4}$.
∵$\overrightarrow{a}$-$\overrightarrow{c}$与$\overrightarrow{b}$-$\overrightarrow{c}$的夹角为$\frac{π}{4}$,
∴点C在△OAB的外接圆的弦AB所对的优弧上,如图所示.
因此|$\overrightarrow{c}$|的最大值为△OAB的外接圆的直径.
∵|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{{\overrightarrow{a}}^{2}-2\overrightarrow{a}•\overrightarrow{b}{+\overrightarrow{b}}^{2}}$=$\sqrt{{(\sqrt{2})}^{2}-2×(-1){+1}^{2}}$=$\sqrt{5}$.
由正弦定理可得:△OAB的外接圆的直径2R=$\frac{|\overrightarrow{a}-\overrightarrow{c}|}{sin\frac{3π}{4}}$=$\frac{\sqrt{5}}{\frac{\sqrt{2}}{2}}$=$\sqrt{10}$,
则|$\overrightarrow{c}$|的最大值为$\sqrt{10}$.
故选:A.

点评 本题考查了向量的夹角公式、三角形法则、数形结合的思想方法、正弦定理等基础知识与基本技能方法,考查了推理能力,属于难题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网