ÌâÄ¿ÄÚÈÝ
17£®ÒÑÖªº¯Êý$y=x+\frac{t}{x}$ÓÐÈçÏÂÐÔÖÊ£ºÈç¹û³£Êýt£¾0£¬ÄÇô¸Ãº¯ÊýÔÚ$£¨0£¬\sqrt{t}]$ÉÏÊǼõº¯Êý£¬ÔÚ$[\sqrt{t}£¬+¡Þ£©$ÉÏÊÇÔöº¯Êý£®£¨1£©ÒÑÖªf£¨x£©=$\frac{4{x}^{2}+4x+5}{2x+1}$-8£¬x¡Ê[0£¬1]£¬ÀûÓÃÉÏÊöÐÔÖÊ£¬Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼äºÍÖµÓò£»
£¨2£©¶ÔÓÚ£¨1£©Öеĺ¯Êýf£¨x£©ºÍº¯Êýg£¨x£©=-x-2a£¬Èô¶ÔÈÎÒâx1¡Ê[0£¬1]£¬×Ü´æÔÚx2¡Ê[0£¬1]£¬Ê¹µÃg£¨x2£©=f£¨x1£©³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£®
·ÖÎö £¨1£©»¯¼òf£¨x£©£¬Éèu=2x+1£¬x¡Ê[0£¬1]£¬1¡Üu¡Ü3£¬Ôò$y=u+\frac{4}{u}-8$£¬u¡Ê[1£¬3]£®ÔËÓÃÐÔÖÊ£¬¼´¿ÉµÃµ½µ¥µ÷Çø¼äºÍÖµÓò£»
£¨2£©ÇóµÃg£¨x£© µÄÖµÓò£¬ÓÉÌâÒâf£¨x£©µÄÖµÓòÊÇg£¨x£©ÖµÓòµÄ×Ó¼¯£¬µÃµ½²»µÈʽ×飬¼´¿ÉµÃµ½aµÄ·¶Î§£®
½â´ð ½â£º£¨1£©$y=f£¨x£©=\frac{{4{x^2}-12x-3}}{2x+1}=2x+1+\frac{4}{2x+1}-8$£¬
Éèu=2x+1£¬x¡Ê[0£¬1]£¬1¡Üu¡Ü3£¬
Ôò$y=u+\frac{4}{u}-8$£¬u¡Ê[1£¬3]£®
ÓÉÒÑÖªÐÔÖʵ㬵±1¡Üu¡Ü2£¬¼´$0¡Üx¡Ü\frac{1}{2}$ʱ£¬f£¨x£©µ¥µ÷µÝ¼õ£¬
ËùÒÔ¼õÇø¼äΪ$[0£¬\frac{1}{2}]$£»µ±2¡Üu¡Ü3£¬¼´$\frac{1}{2}¡Üx¡Ü1$ʱ£¬f£¨x£©µ¥µ÷µÝÔö£¬
ËùÒÔÔöÇø¼äΪ$[\frac{1}{2}£¬1]$£»ÓÉf£¨0£©=-3£¬$f£¨\frac{1}{2}£©=-4$£¬$f£¨1£©=-\frac{11}{3}$£¬
µÃf£¨x£©µÄÖµÓòΪ[-4£¬-3]£®
£¨2£©g£¨x£©=-x-2aΪ[0£¬1]Éϵļõº¯Êý£¬
¹Êg£¨x£©¡Ê[-1-2a£¬-2a]£¬x¡Ê[0£¬1]£¬
ÓÉÌâÒâf£¨x£©µÄÖµÓòÊÇg£¨x£©ÖµÓòµÄ×Ó¼¯£¬
¡à$\left\{\begin{array}{l}-1-2a¡Ü-4\\-2a¡Ý-3\end{array}\right.$£¬¡à$a=\frac{3}{2}$£®
¼´aµÄȡֵ·¶Î§ÊÇ{$\frac{3}{2}$}£®
µãÆÀ ±¾Ì⿼²éº¯ÊýµÄµ¥µ÷Çø¼äºÍÖµÓòµÄÇ󷨣¬º¯ÊýµÄÈÎÒâºÍ´æÔÚÎÊÌâµÄ½â·¨£¬¿¼²é»¯¼òÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | 2 | B£® | -2 | C£® | -3 | D£® | 3 |
| A£® | {1£¬2£¬3£¬4£¬5£¬6} | B£® | {7£¬8} | C£® | {4£¬5£¬6£¬7£¬8} | D£® | {1£¬2£¬7£¬8} |
| A£® | y=£¨$\sqrt{x}$£©2 | B£® | y=$\frac{{x}^{2}}{x}$ | C£® | y=$\left\{\begin{array}{l}{x£¬£¨x£¾0£©}\\{-x£¬£¨x£¼0£©}\end{array}\right.$ | D£® | y=$\root{3}{{x}^{3}}$ |
| A£® | n | B£® | ${£¨\frac{n+1}{n}£©^{n-1}}$ | C£® | n2 | D£® | 2n-1 |