题目内容
14.从一块短轴成为2m的椭圆形板材中截取一块面积最大的矩形,若椭圆的离心率为e,且e∈[$\frac{\sqrt{3}}{2}$,$\frac{\sqrt{21}}{5}$],则该矩形面积的取值范围是( )| A. | [m2,2m2] | B. | [2m2,3m2] | C. | [3m2,4m2] | D. | [4m2,5m2] |
分析 在第一象限内取点(x,y),设x=acosθ,y=bsinθ,表示出圆的内接矩形长和宽,可得矩形的面积,由e∈[$\frac{\sqrt{3}}{2}$,$\frac{\sqrt{21}}{5}$],∴$\frac{3}{4}≤\frac{{a}^{2}-{b}^{2}}{{a}^{2}}≤\frac{21}{25}$⇒2b≤a≤$\frac{5}{2}b$,得:4b2≤2ab≤5b2即可
解答 解:在第一象限内取点(x,y),设x=acosθ,y=bsinθ,(0<θ<$\frac{π}{2}$)
则椭圆的内接矩形长为2acosθ,宽为2bsinθ,
内接矩形面积为2acosθ•2bsinθ=2absin2θ≤2ab,
椭圆的离心率为e,且e∈[$\frac{\sqrt{3}}{2}$,$\frac{\sqrt{21}}{5}$],∴$\frac{3}{4}≤\frac{{a}^{2}-{b}^{2}}{{a}^{2}}≤\frac{21}{25}$⇒2b≤a≤$\frac{5}{2}b$,
得:4b2≤2ab≤5b2,矩形面积的取值范围是[4m2,5m2].
故选:D.
点评 本题考查了椭圆的简单性质,考查椭圆的参数方程的应用,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目
2.若直线y=x+b与圆x2+y2=1有公共点,则实数b的取值范围是( )
| A. | [-1,1] | B. | [0,1] | C. | [0,$\sqrt{2}$] | D. | [-$\sqrt{2}$,$\sqrt{2}$] |
9.已知F1和F2分别是椭圆C:$\frac{{x}^{2}}{2}$+y2=1的左焦点和右焦点,点P(x0,y0)是椭圆C上一点,切满足∠F1PF2≥60°,则x0的取值范围是( )
| A. | [-1,1] | B. | [-$\frac{2\sqrt{3}}{3}$,$\frac{2\sqrt{3}}{3}$] | C. | [1,$\sqrt{2}$] | D. | [$\frac{2\sqrt{3}}{3}$,$\sqrt{2}$] |
6.已知F1(-c,0),F2(c,0)为椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的两个焦点,点P(不在x轴上)为椭圆上的一点,且满足${\overrightarrow{PF}_1}•\overrightarrow{P{F_2}}={c^2}$,则椭圆的离心率的取值范围是( )
| A. | $[{\frac{{\sqrt{3}}}{3},1})$ | B. | $[{\frac{1}{3},\frac{1}{2}}]$ | C. | $[{\frac{{\sqrt{3}}}{3},\frac{{\sqrt{2}}}{2}})$ | D. | $({0,\frac{{\sqrt{2}}}{2}}]$ |
3.已知函数f(x)=$\frac{lnx}{x}$,关于x的不等式f2(x)-af(x)>0有且只有三个整数解,则实数a的取值范围是( )
| A. | [$\frac{ln5}{5}$,$\frac{ln2}{2}$) | B. | [$\frac{ln5}{5}$,$\frac{ln3}{3}$) | C. | ($\frac{ln5}{5}$,$\frac{ln2}{2}$] | D. | ($\frac{ln5}{5}$,$\frac{ln3}{3}$] |