题目内容
9.已知F1和F2分别是椭圆C:$\frac{{x}^{2}}{2}$+y2=1的左焦点和右焦点,点P(x0,y0)是椭圆C上一点,切满足∠F1PF2≥60°,则x0的取值范围是( )| A. | [-1,1] | B. | [-$\frac{2\sqrt{3}}{3}$,$\frac{2\sqrt{3}}{3}$] | C. | [1,$\sqrt{2}$] | D. | [$\frac{2\sqrt{3}}{3}$,$\sqrt{2}$] |
分析 设当点P在第一象限时,求出∠F1PF2=60°时,PF2的大小,由焦半径公式的PF2=a-ex0解得x0,根据对称性,则x0的取值范围
解答 解:∵a=$\sqrt{2}$,b=1,∴c=1.
设当点P在第一象限时,|PF1|=t1,|PF2|=t2,
则由椭圆的定义可得:t1+t2=2$\sqrt{2}$…①
在△F1PF2中,当∠F1PF2=60°,
所以t12+t22-2t1t2•cos60°=4…②,
由①-②得t2=$\sqrt{2}-\frac{\sqrt{6}}{3}$,
由焦半径公式的a-ex0=$\sqrt{2}-\frac{\sqrt{6}}{3}$,解得x0=$\frac{2\sqrt{3}}{3}$,
当点P向y轴靠近时,∠F1PF2增大,根据对称性,则x0的取值范围是:[-$\frac{2\sqrt{3}}{3}$,$\frac{2\sqrt{3}}{3}$]
故选:B
点评 本题考查了椭圆的性质及焦点三角形的特征,属于中档题.
练习册系列答案
相关题目
2.$\int_{-\frac{{\sqrt{3}}}{2}}^{\frac{{\sqrt{3}}}{2}}{\sqrt{1-{x^2}}dx}$=$\frac{3\sqrt{3}+4π}{12}$.
17.若一个复数的实部与虚部互为相反数,则称此复数为“理想复数”.已知z=$\frac{a}{1-2i}$+bi(a,b∈R)为“理想复数”,则( )
| A. | a-5b=0 | B. | 3a-5b=0 | C. | a+5b=0 | D. | 3a+5b=0 |
4.记max{a,b}=$\left\{\begin{array}{l}{a,a≥b}\\{b,a<b}\end{array}\right.$,已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,$\overrightarrow{a}$•$\overrightarrow{b}$=0,$\overrightarrow{c}$=λ$\overrightarrow{a}$+μ$\overrightarrow{b}$(λ,μ≥0,且λ+μ=1,则当max{$\overrightarrow{c}$•$\overrightarrow{a}$,$\overrightarrow{c}$•$\overrightarrow{b}$}取最小值时,|$\overrightarrow{c}$|=( )
| A. | $\frac{2\sqrt{5}}{5}$ | B. | $\frac{2\sqrt{2}}{3}$ | C. | 1 | D. | $\frac{\sqrt{5}}{2}$ |
14.从一块短轴成为2m的椭圆形板材中截取一块面积最大的矩形,若椭圆的离心率为e,且e∈[$\frac{\sqrt{3}}{2}$,$\frac{\sqrt{21}}{5}$],则该矩形面积的取值范围是( )
| A. | [m2,2m2] | B. | [2m2,3m2] | C. | [3m2,4m2] | D. | [4m2,5m2] |
1.椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F,P为椭圆C上的一点,且位于第一象限,直线PO,PF分别交椭圆C于M,N两点.若△POF为正三角形,则直线MN的斜率等于( )
| A. | $\sqrt{3}$-1 | B. | $\sqrt{3}$-$\sqrt{2}$ | C. | 2-$\sqrt{2}$ | D. | 2-$\sqrt{3}$ |
18.已知数列{an}是递增的等比数列,a1+a4=9,a2a3=8,则数列{an}的前2016项之和S2016=( )
| A. | 22016 | B. | 22015-1 | C. | 22016-1 | D. | 22017-1 |
18.下列函数既是奇函数,又在[-1,1]上单调递增是( )
| A. | f(x)=|sinx| | B. | f(x)=ln$\frac{2-x}{2+x}$ | C. | f(x)=$\frac{1}{2}$(ex-e-x) | D. | f(x)=ln($\sqrt{{x}^{2}+1}$-x) |