题目内容
在数列{an}中,an=
+
+…+
,又bn=
,则数列{bn}的前n项和为
.
| 1 |
| n+1 |
| 2 |
| n+1 |
| n |
| n+1 |
| 2 |
| anan+1 |
| 8n |
| n+1 |
| 8n |
| n+1 |
分析:先利用等差数列的求和公式求出an=
+
+…+
,代入bn=
,然后利用裂项求和即可求解
| 1 |
| n+1 |
| 2 |
| n+2 |
| n |
| n+1 |
| 2 |
| anan+1 |
解答:解:∵an=
+
+…+
=
=
∴bn=
=
=
=8(
-
)
∴Sn=8(1-
+
-
+…+
-
)
=8(1-
)=
故答案为:
| 1 |
| n+1 |
| 2 |
| n+2 |
| n |
| n+1 |
| ||
| n+1 |
| n |
| 2 |
∴bn=
| 2 |
| anan+1 |
| 2 | ||
|
| 8 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴Sn=8(1-
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
=8(1-
| 1 |
| n+1 |
| 8n |
| n+1 |
故答案为:
| 8n |
| n+1 |
点评:本题主要考查了等差数列的求和公式及裂项求和方法的简单应用,属于基础试题
练习册系列答案
相关题目