题目内容

若△ABC的三个内角满足:2B=A+C,且A<B<C,tanAtanC=2+
3
,求A,B,C的大小.
考点:两角和与差的正切函数
专题:解三角形
分析:由A,B及C成等差数列,利用等差数列的性质得到A+C=2B,再利用三角形的内角和定理求出B的度数,进而得到A+C的度数,利用两角和与差的正切函数公式化简tan(A+C),根据A+C的度数,利用特殊角的三角函数值求出tan(A+C)的值,把已知的tanAtanC的值代入,求出tanA+tanC的值,根据韦达定理得到关于tanA和tanC的方程,求出方程的解得到tanA和tanC的值,利用特殊角的三角函数值求出A和C的度数.
解答: 解:由A+B+C=180°及A+C=2B,
得B=60°,A+C=120°,
∴tan(A+C)=
tanA+tanC
1-tanAtanC
=-
3
,又tanAtanC=2+
3

∴tanA+tanC=3+
3

∴tanA,tanC为二次方程x2-(3+
3
)x+2+
3
=0的根,
∴tanA=1,tanA=2+
3
或tanC=2+
3
,tanC=1,
∵A<B<C,
∴A=45°,C=75°.B=60°.
点评:此题属于解三角形的题型,涉及的知识有:两角和与差的正切函数公式,等差数列的性质,韦达定理,正弦定理以及特殊角的三角函数值,注意不要错解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网