题目内容
已知函数若, 则等于 .
若函数为偶函数,则 .
已知是定义在上的奇函数,且当时,,则在上的解析式为 .
若存在实常数和,使得函数和对其公共定义域上的任意实数都满足:和恒成立,则称此直线为和的“隔离直线”,已知函数,有下列命题:
①在内单调递增;
②和之间存在“隔离直线”,且的最小值为;
③和之间存在“隔离直线”,且的取值范围是;
④和之间存在唯一的“隔离直线”.
其中真命题的个数有( )
A.个 B.个 C.个 D.个
过抛物线()的焦点作倾斜角为的直线,若直线与抛物线在第一象限的交点为并且点也在双曲线(,)的一条渐近线上,则双曲线的离心率为( )
A. B. C. D.
函数,,若对于任意的,都存在,使得成立,则实数的取值范围是__________.
若指数函数的图象过点,则 ;不等式的解集为 .
已知命题;命题若,则有实数解.那么下列命题中是真命题的是( )
A、 B、 C、 D、且
设函数f (x)=x-lnx (x>0),则y=f (x)( )
A.在区间( ,1)、(1,e)内均有零点
B.在区间( ,1)、(1,e)内均无零点
C.在区间( ,1)内有零点,在区间(1,e)内无零点
D.在区间( ,1)内无零点,在区间(1,e)内有零点