题目内容
若
=1,则常数a=( )
| lim |
| n→∞ |
| 1 | ||||||
|
分析:由
=
=
可求极限,进而可求a
| lim |
| n→∞ |
| 1 | ||||||
|
| lim |
| n→∞ |
| ||||
a
|
| lim |
| n→∞ |
| ||||
| a |
解答:解:∵
=
=
=
×2
∴2×
=1
∴a=2
故选:B
| lim |
| n→∞ |
| 1 | ||||||
|
| lim |
| n→∞ |
| ||||
a
|
| lim |
| n→∞ |
| ||||
| a |
| 1 |
| a |
∴2×
| 1 |
| a |
∴a=2
故选:B
点评:本题主要考查 了
型极限的求解,解题的关键是对分式进行分母有理化,属于基础试题.
| 1 |
| ∞-∞ |
练习册系列答案
相关题目