题目内容

10.己知复数z=cosθ+isinθ(i是虚数单位),则$\frac{1+{z}^{2}}{z}$=(  )
A.cosθ+isinθB.2cosθC.2sinθD.isin2θ

分析 z=cosθ+isinθ代入$\frac{1+{z}^{2}}{z}$,然后利用复数代数形式的乘除运算化简得答案.

解答 解:∵z=cosθ+isinθ,
∴$\frac{1+{z}^{2}}{z}$=$\frac{1+(cosθ+isinθ)^{2}}{cosθ+isinθ}$=$\frac{1+cos2θ+isin2θ}{cosθ+isinθ}$
=$\frac{2co{s}^{2}θ+isin2θ}{cosθ+isinθ}$=$\frac{2cosθ(cosθ+isinθ)}{cosθ+isinθ}=2cosθ$.
故选:B.

点评 本题考查复数代数形式的乘除运算,考查了三角函数的化简求值,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网