题目内容
在数列{an}中,a1=0,且对任意k∈N+,a2k-1,a2k,a2k+1成等差数列,其公差为2k.
(Ⅰ)证明a4,s5,a6成等比数列;
(Ⅱ)求数列{an}的通项公式.
(Ⅰ)证明a4,s5,a6成等比数列;
(Ⅱ)求数列{an}的通项公式.
分析:(I)由题设可知,对任意k∈N+,a2k-1,a2k,a2k+1成等差数列,分别取前几个值,可得
=
=
;(II)由题设可得:分n为奇数和偶数分别来求,可得答案.
| a6 |
| a5 |
| a5 |
| a4 |
| 3 |
| 2 |
解答:解:(I)由题设可知,a2=a1+2=2,a3=a2+2=4,a4=a3+4=8,a5=a4+4=12,a6=a5+6=18
从而
=
=
,所以a4,s5,a6成等比数列;
(II)由题设可得a2k+1-a2k-1=4k,k∈N*,所以a2k+1-a1=(a2k+1-a2k-1)+(a2k-1-a2k-3)+…+(a3-a1)
=4k+4(k-1)+…+4×1=2k(k+1),由a1=0,得 a2k+1=2k(k+1),从而a2k=a2k+1-2k=2k2
所以数列{an}的通项公式为an=
.
从而
| a6 |
| a5 |
| a5 |
| a4 |
| 3 |
| 2 |
(II)由题设可得a2k+1-a2k-1=4k,k∈N*,所以a2k+1-a1=(a2k+1-a2k-1)+(a2k-1-a2k-3)+…+(a3-a1)
=4k+4(k-1)+…+4×1=2k(k+1),由a1=0,得 a2k+1=2k(k+1),从而a2k=a2k+1-2k=2k2
所以数列{an}的通项公式为an=
|
点评:本题考查等差数列的知识,涉及等比数列的定义和分类讨论的思想,属中档题.
练习册系列答案
相关题目