题目内容
若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( )
A.
B.
C.
D.![]()
D
[解析] 从五位大学生中选三人共有10种等可能选法,事件“甲或乙被录用”的对立事件为“甲、乙都未被录用”即“丙、丁、戊被录用”,只有一种等可能情况,所以P=1-
=
.
某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验.根据收集到的数据(如下表),由最小二乘法求得回归直线方程
=0.67x+54.9.
| 零件数x(个) | 10 | 20 | 30 | 40 | 50 |
| 加工时间y(min) | 62 |
| 75 | 81 | 89 |
表中一个数据模糊不清,经推断,该数据的值为______.
现对某市工薪阶层关于“楼市限购令”的态度进行调查,随机调查了50人,他们月收入的频数分布及对“楼市限购令”赞成人数如下表.
| 月收入 (单位:百元) | [15, 25) | [25, 35) | [35, 45) | [45, 55) | [55, 65) | [65, 75) |
| 频数 | 5 | 10 | 15 | 10 | 5 | 5 |
| 赞成人数 | 4 | 8 | 12 | 5 | 2 | 1 |
(1)由以上统计数据填下面2×2列联表,并回答是否有99%的把握认为“月收入以5500为分界点对‘楼市限购令’的态度有差异”;
|
| 月收入不低于55 百元的人数 | 月收入低于55 百元的人数 | 合计 |
| 赞成 | a= | c= | |
| 不赞成 | b= | d= | |
| 合计 |
(2)若对月收入在[15,25),[25,35)的被调查人中各随机选取1人进行追踪调查,求选中的2人中不赞成“楼市限购令”人数至多1人的概率.
| P(χ2≥k) | 0.050 | 0.010 | 0.001 |
| k | 3.841 | 6.635 | 10.828 |
K2=![]()