题目内容
(2012•广安二模)已知数列{an}为等差数列,公差d≠0,同{an}中的部分项组成的数列ab1,ab2,…,abn,…为等比数列,其中b1=1,b2=5,b3=17.
(1)求数列{bn}的通项公式;
(2)记Tn=
b1+
b2+
b3+…+
bn,求
.
(1)求数列{bn}的通项公式;
(2)记Tn=
| C | 1 n |
| C | 2 n |
| C | 3 n |
| C | n n |
| lim |
| n→∞ |
| Tn |
| 4n+bn |
分析:(1)由题意可知,a52=a1•a17,结合等差数列的通项公式及d≠0可求a1=2d,进而可求等比数列{abn}的公比q=
,由等比数列的通项公式可求abn,在利用等差数列的通项公式可求abn=a1+(bn-1)d,从而可求
(2)由Tn=
b1+
b2+
b3+…+
bn,利用分组求和及组合数的性质可求Tn,代入
=
,分子分母同时除以4n即可求解
| a5 |
| a1 |
(2)由Tn=
| C | 1 n |
| C | 2 n |
| C | 3 n |
| C | n n |
| lim |
| n→∞ |
| Tn |
| 4n+bn |
| lim |
| n→∞ |
| ||||
| 4n+2•3n-1-1 |
解答:解:(1)由题意可知,a52=a1•a17
即(a1+4d)2=a1(a1+16d)
∴a1d=2d2
∵d≠0
∴a1=2d
∴数列{abn}的公比q=
=
=3
∴abn=a1•3n-1①
∵abn=a1+(bn-1)d=
a1②
联立①②可得,a1•3n-1=
•a1
∴bn=2•3n-1-1
(2)∵Tn=
b1+
b2+
b3+…+
bn,
=
(2•30-1)+
(2•31-1)+…+
(2•n-1-1)
=
(3
+32
+…+3n
)-
+
+…+
)
=
[(1+3)n-1]-(2n-1)]
∴
=
=
=
即(a1+4d)2=a1(a1+16d)
∴a1d=2d2
∵d≠0
∴a1=2d
∴数列{abn}的公比q=
| a5 |
| a1 |
| a1+4d |
| a1 |
∴abn=a1•3n-1①
∵abn=a1+(bn-1)d=
| 1+bn |
| 2 |
联立①②可得,a1•3n-1=
| 1+bn |
| 2 |
∴bn=2•3n-1-1
(2)∵Tn=
| C | 1 n |
| C | 2 n |
| C | 3 n |
| C | n n |
=
| c | 1 n |
| c | 2 n |
| c | n n |
=
| 2 |
| 3 |
| C | 1 n |
| C | 2 n |
| C | n n |
| (C | 1 n |
| C | 2 n |
| C | n n |
=
| 2 |
| 3 |
∴
| lim |
| n→∞ |
| Tn |
| 4n+bn |
| lim |
| n→∞ |
| ||||
| 4n+2•3n-1-1 |
| lim |
| n→∞ |
| ||||||||
1+
|
| 2 |
| 3 |
点评:本题主要考查了等差数列与等比数列的通项公式及性质的综合应用,其中(2)的求解关键在于灵活利用组合数的性质.
练习册系列答案
相关题目