题目内容

4.已知正项数列{an}的前n项和为Sn,且4Sn=(an+1)2(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=2n•an,求数列{bn}的前n项和Tn

分析 (1)利用递推关系、等差数列的通项公式即可得出.
(2)${b_n}=(2n-1)•{2^n}$,利用“错位相减法”、等比数列的求和公式即可得出.

解答 解:(1)当n=1时,$4{a_1}={({a_1}+1)^2}$,∴a1=1…(1分)
当n≥2时,$4{S_{n-1}}={({a_{n-1}}+1)^2}$,又$4{S_n}={({a_n}+1)^2}$,两式相减得:$4{a_n}=a_n^2+2{a_n}-a_{n-1}^2-2{a_{n-1}}$,…(2分)
即 (an+an-1)(an-an-1-2)=0,…(4分)
由an>0,∴an-an-1=2,…(5分)
所以,数列{an}是首项为1,公差为2的等差数列,即an=2n-1.…(6分)
(2)∵${b_n}=(2n-1)•{2^n}$,
∴${T_n}=1×{2^1}+3×{2^2}+5×{2^3}+…+(2n-1)×{2^n}$①
$2{T_n}=1×{2^2}+3×{2^3}+5×{2^4}+…+(2n-3)×{2^n}+(2n-1)×{2^{n+1}}$②…(8分)
①-②得-Tn=2+2(22+23+…+2n)-(2n-1)×2n+1=$2+\frac{{8-{2^{n+2}}}}{1-2}-(2n-1)×{2^{n+1}}$=2-8+2n+2-(2n-1)×2n+1
=-6+2n+1(2-2n+1)=-6+2n+1(3-2n)…(11分)
∴${T_n}=6+{2^{n+1}}(2n-3)$.…(12分)

点评 本题考查了“错位相减法”、等差数列与等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网