题目内容
已知cos(α+
)=
,
≤α<
,求cos(2α+
)的值.
| π |
| 4 |
| 3 |
| 5 |
| π |
| 2 |
| 3π |
| 2 |
| π |
| 4 |
cos(2α+
)=cos2αcos
-sin2αsin
=
(cos2α-sin2α).
≤α+
且cos(α+
)>0,
≤α+
<
,
∴sin(α+
)=-
=-
从而cos2α=sin(2α+
)=2sin(α+
)cos(α+
)=-
,
sin2α=-cos(2α+
)=1-2cos2(α+
)=
∴cos(2α+
)=
×(-
-
)=-
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| ||
| 2 |
| 3π |
| 4 |
| 7π |
| 4 |
| π |
| 4 |
| 3π |
| 4 |
| π |
| 4 |
| 7π |
| 4 |
∴sin(α+
| π |
| 4 |
1-cos2(α+
|
| 4 |
| 5 |
从而cos2α=sin(2α+
| π |
| 2 |
| π |
| 4 |
| π |
| 4 |
| 24 |
| 25 |
sin2α=-cos(2α+
| π |
| 2 |
| π |
| 4 |
| 7 |
| 25 |
∴cos(2α+
| π |
| 4 |
| ||
| 2 |
| 24 |
| 25 |
| 7 |
| 25 |
31
| ||
| 50 |
练习册系列答案
相关题目
已知cos(
-α)cos(
+α)=
(0<α<
),则sin2a等于( )
| π |
| 4 |
| π |
| 4 |
| ||
| 6 |
| π |
| 2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|