题目内容

14.Sn为数列{an}的前n项和,Sn=n2+n
(Ⅰ)求数列{an}的通项公式
(Ⅱ)求证:数列{an}是等差数列
(Ⅲ)设数列{bn}是首项为1,公比为$\frac{1}{2}$的等比数列,求数列{an•bn}的前n项和Tn

分析 (Ⅰ)运用当n=1时,a1=S1,当n>1时,an=Sn-Sn-1,化简整理,即可得到所求通项;
(Ⅱ)运用等差数列的定义,即可得证;
(Ⅲ)运用等比数列的通项公式可得bn,再由数列的求和方法:错位相减法,结合等比数列的求和公式,化简整理,即可得到所求和.

解答 解:(Ⅰ)当n>1时,an=Sn-Sn-1=n2+n-[(n-1)2+(n-1)]=2n,
当n=1时,a1=S1=2,符合上式.
综上,an=2n,n∈N*
(Ⅱ)证明:由(Ⅰ)知an=2n,
则an+1=2(n+1),
故an+1-an=2(n+1)-2n=2,
∴数列{an}是以2为首项,2为公差的等差数列; 
(Ⅲ)∵数列{bn}是首项为1,公比为$\frac{1}{2}$的等比数列,
∴bn=($\frac{1}{2}$)n-1
故数列{an•bn}的前n项和Tn=2•1+4•$\frac{1}{2}$+6•$\frac{1}{4}$+…+2n•($\frac{1}{2}$)n-1
$\frac{1}{2}$Tn=2•$\frac{1}{2}$+4•$\frac{1}{4}$+6•$\frac{1}{8}$+…+2n•($\frac{1}{2}$)n
两式相减可得,$\frac{1}{2}$Tn=2(1+$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{8}$+…+($\frac{1}{2}$)n-1)-2n•($\frac{1}{2}$)n
=2•$\frac{1-(\frac{1}{2})^{n}}{1-\frac{1}{2}}$-2n•($\frac{1}{2}$)n
化简可得,前n项和Tn=8-(8+4n)•($\frac{1}{2}$)n

点评 本题考查等差数列的定义和通项公式,考查数列的求方法:错位相减法,同时考查等比数列的通项公式和求和公式的运用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网