题目内容
16.已知双曲线C:$\frac{x^2}{m}-\frac{y^2}{n}$=1,曲线f(x)=ex在点(0,2)处的切线方程为2mx-ny+2=0,则该双曲线的渐近线方程为( )| A. | $y=±\sqrt{2}x$ | B. | y=±2x | C. | $y=±\frac{{\sqrt{2}}}{2}x$ | D. | $y=±\frac{1}{2}x$ |
分析 利用导数以及切线的斜率,切线方程,求出m,n,然后求解双曲线的渐近线方程.
解答 解:∵f(x)=ex,∴f′(0)=1,曲线f(x)=ex在点(0,2)处的切线方程为:x-y+2=0,
∴2m=1,n=1,渐近线方程为y=±$\sqrt{\frac{n}{m}}x$=$±\sqrt{2}x$,
故选:A.
点评 本题考查函数的导数的应用,双曲线的简单性质的应用,考查转化思想以及计算能力.
练习册系列答案
相关题目
6.函数f(x)=$\frac{a{x}^{3}}{3}$+$\frac{a{x}^{2}}{2}$-2ax+2a+1的图象经过四个象限,则实数a的取值范围是( )
| A. | (-$\frac{6}{5}$,$\frac{3}{16}$) | B. | (-$\frac{8}{5}$,-$\frac{3}{16}$) | C. | (-$\frac{8}{5}$,-$\frac{1}{16}$) | D. | (-$\frac{6}{5}$,-$\frac{3}{16}$) |
7.化简$\frac{sin(2π-α)cos(π+α)cos(\frac{π}{2}+α)cos(\frac{11π}{2}-α)}{cos(π-α)sin(3π-α)sin(-π-α)sin(\frac{9π}{2}+α)}$的结果是( )
| A. | 1 | B. | sinα | C. | -tanα | D. | tanα |
6.定义在R上的函数f(x)既是奇函数又是周期函数,若f(x)的最小正周期是π,且当$x∈[0,\frac{π}{2})$时,f(x)=sinx,则$f(\frac{8}{3}π)$的值为( )
| A. | $\frac{1}{2}$ | B. | $-\frac{{\sqrt{3}}}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $-\frac{1}{2}$ |