题目内容

11.已知等比数列{an}中,a1=$\frac{1}{2}$,公比q=$\frac{1}{2}$.
(1)Sn为{an}的前n项和;证明:Sn=1-an
(2)设bn=log2a1+log2a2+…+log2an,求数列{bn}的通项公式.

分析 (1)分别由等比数列的通项公式和求和公式计算两边的式子,验证可得;
(2)由(1)和对数的运算可得log2an=-n,可得bn=-(1+2+3+…+n),由等差数列的求和公式可得.

解答 (1)证明:∵等比数列{an}中,a1=$\frac{1}{2}$,公比q=$\frac{1}{2}$,
∴Sn=$\frac{\frac{1}{2}[1-(\frac{1}{2})^{n}]}{1-\frac{1}{2}}$=1-($\frac{1}{2}$)n,1-an=1-$\frac{1}{2}$($\frac{1}{2}$)n-1=1-($\frac{1}{2}$)n
∴Sn=1-an
(2)解:由(1)可知an=($\frac{1}{2}$)n,故log2an=-n,
∴bn=log2a1+log2a2+…+log2an=-1+(-2)+(-3)+…+(-n)
=-(1+2+3+…+n)=-$\frac{n(1+n)}{2}$.

点评 本题考查等比数列的通项公式和求和公式,涉及等差数列的求和公式,属基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网