题目内容
将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到一个班,则不同分法的种数为
- A.18
- B.24
- C.30
- D.36
C
分析:由题意知本题可以先做出所有情况再减去不合题意的结果,用间接法解四名学生中有两名学生分在一个班的种数是C42,顺序有A33种,而甲乙被分在同一个班的有A33种,两个相减得到结果.
解答:∵每个班至少分到一名学生,且甲、乙两名学生不能分到一个班
用间接法解四名学生中有两名学生分在一个班的种数是C42,
元素还有一个排列,有A33种,
而甲乙被分在同一个班的有A33种,
∴满足条件的种数是C42A33-A33=30
故选C.
点评:本题考查排列组合的实际应用,考查利用排列组合解决实际问题,是一个基础题,这种题目是排列组合中经常出现的一个问题.
分析:由题意知本题可以先做出所有情况再减去不合题意的结果,用间接法解四名学生中有两名学生分在一个班的种数是C42,顺序有A33种,而甲乙被分在同一个班的有A33种,两个相减得到结果.
解答:∵每个班至少分到一名学生,且甲、乙两名学生不能分到一个班
用间接法解四名学生中有两名学生分在一个班的种数是C42,
元素还有一个排列,有A33种,
而甲乙被分在同一个班的有A33种,
∴满足条件的种数是C42A33-A33=30
故选C.
点评:本题考查排列组合的实际应用,考查利用排列组合解决实际问题,是一个基础题,这种题目是排列组合中经常出现的一个问题.
练习册系列答案
相关题目