题目内容
15.已知正项等比数列{an}满足log2an+2-log2an=2,且a3=8,则数列{an}的前n项和Sn=2n+1-2.分析 利用对数的运算性质可知$\frac{{a}_{n+2}}{{a}_{n}}$,进而可得分别计算出公比和首项,利用等比数列的求和公式计算即得结论.
解答 解:∵log2an+2-log2an=2,
∴log2$\frac{{a}_{n+2}}{{a}_{n}}$=2,即$\frac{{a}_{n+2}}{{a}_{n}}$=4,
又∵数列{an}为正项等比数列,
∴q=$\sqrt{\frac{{a}_{n+2}}{{a}_{n}}}$=2,
∴a1=$\frac{{a}_{3}}{{q}^{2}}$=2,
∴数列{an}时首项、公比均为2的等比数列,
∴Sn=$\frac{2(1-{2}^{n})}{1-2}$=2n+1-2,
故答案为:2n+1-2.
点评 本题考查数列的通项及前n项和,考查运算求解能力,注意解题方法的积累,属于基础题.
练习册系列答案
相关题目
3.某种商品价格与该商品日需求量之间的几组对照数据如表:
(Ⅰ) 求y关于x的线性回归方程;
(Ⅱ) 利用(Ⅰ)中的回归方程,当价格x=40元/kg时,日需求量y的预测值为多少?
参考公式:线性回归方程$\widehaty=bx+a$,其中b=$\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}$,a=$\overline y-b\overline x$.
| 价格x(元/kg) | 10 | 15 | 20 | 25 | 30 |
| 日需求量y(kg) | 11 | 10 | 8 | 6 | 5 |
(Ⅱ) 利用(Ⅰ)中的回归方程,当价格x=40元/kg时,日需求量y的预测值为多少?
参考公式:线性回归方程$\widehaty=bx+a$,其中b=$\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}$,a=$\overline y-b\overline x$.
10.某单位为了制定节能减排的目标,先调查了用电量y(度)与气温x(℃)之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:
由表中数据,得线性回归方程$\widehaty=-2x+\widehata$,由此估计用电量为72度时气温的度数约为( )
| 气温(℃) | 18 | 13 | 10 | -1 |
| 用电量(度) | 24 | 34 | 38 | 64 |
| A. | -10 | B. | -8 | C. | -6 | D. | -4 |