题目内容

已知向量
a
=(sinθ,-2)
b
=(1,cosθ)
互相垂直,其中θ∈(0,
π
2
)

(1)求sinθ和cosθ的值;
(2)若sin(θ-φ)=
10
10
,0<φ<
π
2
,求cosφ的值.
(1)∵
a
b
互相垂直,则
a
b
=sinθ-2cosθ=0

即sinθ=2cosθ,代入sin2θ+cos2θ=1得sinθ=±
2
5
5
,cosθ=±
5
5
,又θ∈(0,
π
2
)

sinθ=
2
5
5
,cosθ=
5
5

(2)∵0<?<
π
2
0<θ<
π
2

-
π
2
<θ-?<
π
2
,则cos(θ-?)=
1-sin2(θ-?)
=
3
10
10

∴cosφ=cos[θ-(θ-?)]=cosθcos(θ-?)+sinθsin(θ-?)=
2
2
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网