题目内容
3.若实数x,y满足条件$\left\{\begin{array}{l}{x+2y-5≤0}\\{2x+y-4≤0}\\{x≥0}\\{y≥1}\end{array}\right.$,目标函数z=x+y,则其最大值是3.分析 先根据约束条件画出可行域,再利用几何意义求最值,只需求出直线z=x+y过点(1,2)时,z最大值即可.
解答 解:先根据约束条件画出可行域如图,![]()
由$\left\{\begin{array}{l}{x+2y-5=0}\\{2x+y-4=0}\end{array}\right.$,解得:A(1,2)
由z=x+y,得:y=-x+z,
由图知,当直线过点A(1,2)时,z最大值为3.
故答案为:3.
点评 本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.
练习册系列答案
相关题目
13.已知函数$f(x)=\left\{\begin{array}{l}1,\;\;-1≤x≤0\\ \frac{1}{x},\;\;x>0\end{array}\right.$,则使方程x+f(x)=m有解的实数m的取值范围是( )
| A. | (-∞,0)∪(1,2) | B. | [0,+∞) | C. | (-∞,1]∪[2,+∞) | D. | [0,1]∪[2,+∞) |
14.“$?{x_0}∈{C_R}Q,x_0^2∈Q$”的否定是( )
| A. | $?{x_0}∉{C_R}Q,x_0^2∈Q$ | B. | $?{x_0}∈{C_R}Q,x_0^2∉Q$ | ||
| C. | $?{x_0}∈{C_R}Q,x_0^2∈Q$ | D. | $?{x_0}∈{C_R}Q,x_0^2∉Q$ |
11.已知命题P:?x∈R,3x2+1>0,则¬p为( )
| A. | ?x∈R,3x2+1≤0 | B. | ?x∈R,3x2+1≤0 | C. | ?x∈R,3x2+1<0 | D. | ?x∈R,3x2+1<0 |
15.已知集合A={x|2x≤4},B={x|log2x>0},则A∩B=( )
| A. | [1,2] | B. | (1,2] | C. | (0,1) | D. | (0,1] |
12.已知α>0且a≠1,函数f(x)=$\left\{\begin{array}{l}{(a-1)x+3a-4,(x≤0)}\\{{a}^{x},(x>0)}\end{array}\right.$满足对任意实数x1≠x2,都有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1)成立,则a的取值范围是( )
| A. | $(1,\frac{5}{3}]$ | B. | (0,1) | C. | (1,+∞) | D. | $[\frac{5}{3},2)$ |
13.集合A={x|y=log2(x+1)},B={-1,0,1},则A∩B等于( )
| A. | {0,1} | B. | {-1,0,1} | C. | {0} | D. | {1} |