题目内容
已知函数
,
(a为实数).
(1) 当a=5时,求函数
在
处的切线方程;
(2) 求
在区间
(
)上的最小值;
(3) 若存在两不等实根
,使方程
成立,求实数a的取值范围.
(1) 当a=5时,求函数
(2) 求
(3) 若存在两不等实根
(1)
;(2)当
时,
,当
时,
;(3)
.
试题分析:本题主要考查导数的运算、利用导数研究函数的单调性等性质等基础知识,同时考查分类讨论等综合解题能力.第一问,先将
试题解析:(1)当
所以切线方程为:
(2)
| 单调递减 | 极小值(最小值) | 单调递增 |
①当
所以
②当
所以
(3) 由
令
| 单调递减 | 极小值(最小值) | 单调递增 |
练习册系列答案
相关题目