题目内容

在数列{an}中,a1=2,an+an+1=1(n∈N*),设Sn为数列{an}的前n项和,则S2007-2S2006+S2005的值为(  )
分析:由a1=2,an+an+1=1(n∈N*),可求得a2=-1,a3=2,…从而得到规律,继而可得答案.
解答:解:∵数列{an}中,a1=2,an+an+1=1(n∈N*),
∴a2=-1,a3=2,…
∴a1=a3=a5=…=a2n-1=2(n∈N*),
a2=a4=…=a2n=-1(n∈N*),
∴则S2007-2S2006+S2005
=(S2007-S2006)+(S2005-S2006
=a2007-a2006
=2-(-1)
=3.
故选C.
点评:本题考查数列的求和,考查推理分析与运算的能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网