题目内容
已知
=(
,-
),
=(cosα,sinα),|3
-2
|=3,求:
(1)|3
+
|的值;
(2)向量
=3
-2
与
=3
+
的夹角θ的余弦值.
| m |
| 3 |
| 5 |
| 4 |
| 5 |
| n |
| m |
| n |
(1)|3
| m |
| n |
(2)向量
| a |
| m |
| n |
| b |
| m |
| n |
分析:(1)由题意可得|
|=1,|
|=1由|3
-2
|=3.两边同时平方,结合已知|
|=1,|
|=1可求
•
=
,根据向量的数量积的性质可求
(2)可先求
•
=(3
-2
)•(3
+
)=9
2-3
•
-2
2,代入夹角公式cosθ=
即可
| m |
| n |
| m |
| n |
| m |
| n |
| m |
| n |
| 1 |
| 3 |
(2)可先求
| a |
| b |
| m |
| n |
| m |
| n |
| m |
| m |
| n |
| n |
| ||||
|
|
解答:解:(1)由题意可得|
|=1,|
|=1
由|3
-2
|=3
得|3
-2
|2=9,∴9
2-12
•
+4
2=9.则
•
=
∴|3
+
|2=9
2+6
•
+
2=12
∴|3
+
|=2
(2)∵
•
=(3
-2
)•(3
+
)=9
2-3
•
-2
2=6
∴cosθ=
=
=
| m |
| n |
由|3
| m |
| n |
得|3
| m |
| n |
| m |
| m |
| n |
| n |
| m |
| n |
| 1 |
| 3 |
∴|3
| m |
| n |
| m |
| m |
| n |
| n |
∴|3
| m |
| n |
| 3 |
(2)∵
| a |
| b |
| m |
| n |
| m |
| n |
| m |
| m |
| n |
| n |
∴cosθ=
| ||||
|
|
| 6 | ||
2
|
| ||
| 3 |
点评:本题主要考查了向量的数量积的性质的应用,向量的夹角公式的应用,属于基础试题
练习册系列答案
相关题目