题目内容
设f(k)=
+
+
+…+
(k∈N*),则f(k+1)可表示为( )
| 1 |
| k+1 |
| 1 |
| k+2 |
| 1 |
| k+3 |
| 1 |
| 2k |
分析:根据f(k),写出f(k+1)的表达式,从而可得n=k到n=k+1变化了的项,得到结果.
解答:解:∵f(k)=
+
+
+…+
(k∈N*),
∴f(k+1)=
+
+
+…+
=
+
+…+
+
+
=
+
+
+…+
+
-
=f(k)+
-
.
故选:C.
| 1 |
| k+1 |
| 1 |
| k+2 |
| 1 |
| k+3 |
| 1 |
| 2k |
∴f(k+1)=
| 1 |
| k+1+1 |
| 1 |
| k+1+2 |
| 1 |
| k+1+3 |
| 1 |
| 2(k+1) |
=
| 1 |
| k+2 |
| 1 |
| k+3 |
| 1 |
| 2k |
| 1 |
| 2k+1 |
| 1 |
| 2k+2 |
=
| 1 |
| k+1 |
| 1 |
| k+2 |
| 1 |
| k+3 |
| 1 |
| 2k |
| 1 |
| 2k+1 |
| 1 |
| 2k+2 |
=f(k)+
| 1 |
| 2k+1 |
| 1 |
| 2k+2 |
故选:C.
点评:本题考查数学归纳法,考查数学归纳法中的推理,确定n=k到n=k+1变化了的项是解题的关键.
练习册系列答案
相关题目