题目内容
2.cos60°sin75°+sin60°sin165°的值是( )| A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{1}{2}$ | D. | 1 |
分析 直接利用诱导公式以及两角和与差的三角函数化简求解即可.
解答 解:cos60°sin75°+sin60°sin165°
=cos60°cos15°+sin60°sin15°
=cos(60°-15°)
=cos45°
=$\frac{\sqrt{2}}{2}$.
故选:A.
点评 本题考查两角和与差的三角函数,三角函数的化简求值,考查计算能力.
练习册系列答案
相关题目
13.投掷一枚质地均匀的骰子两次,记A={两次的点数均为奇数},B={两次的点数之和为4},则P(B|A)=( )
| A. | $\frac{1}{12}$ | B. | $\frac{1}{4}$ | C. | $\frac{2}{9}$ | D. | $\frac{2}{3}$ |
10.若非零向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$=2|$\overrightarrow{b}$|=|$\overrightarrow{a}$-3$\overrightarrow{b}$|,则$\overrightarrow{a}$,$\overrightarrow{b}$夹角的余弦值为( )
| A. | $-\frac{3}{8}$ | B. | $\frac{3}{8}$ | C. | $-\frac{3}{4}$ | D. | $\frac{3}{4}$ |
7.△ABC外接圆的半径为$\sqrt{2}$,圆心为O,BC=2,且∠ABC为锐角,则$\overrightarrow{OA}$$•\overrightarrow{BC}$的取值范围是( )
| A. | (-2,2$\sqrt{2}$] | B. | (-2$\sqrt{2}$,2] | C. | [-2$\sqrt{2}$,2$\sqrt{2}$] | D. | (-2,2) |