题目内容
若
=(1,2),
=(-3,2),k为何值时:
(1)(k
+
)⊥(
-3
);
(2)(k
+
)∥(
-3
)?
| a |
| b |
(1)(k
| a |
| b |
| a |
| b |
(2)(k
| a |
| b |
| a |
| b |
分析:(1)由
=(1,2),
=(-3,2),且(k
+
)⊥(
-3
),知(k
+
)•(
-3
)=(k-3,2k+2)•(10,-4)=10(k-3)-4(2k+2)=0,由此能求出k.
(2)由
=(1,2),
=(-3,2),且(k
+
)∥(
-3
),能得到
=
,由此能求出k的值.
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
(2)由
| a |
| b |
| a |
| b |
| a |
| b |
| k-3 |
| 10 |
| 2k+2 |
| -4 |
解答:解:(1)∵
=(1,2),
=(-3,2),
且(k
+
)⊥(
-3
),
∴(k
+
)•(
-3
)=(k-3,2k+2)•(10,-4)
=10(k-3)-4(2k+2)
=10k-30-8k-8
=2k-38
=0,
解得k=19.
(2)∵
=(1,2),
=(-3,2),
∴k
+
=(k-3,2k+2),
(
-3
)=(10,-4).
∵(k
+
)∥(
-3
),
∴
=
,
解得k=-
.
| a |
| b |
且(k
| a |
| b |
| a |
| b |
∴(k
| a |
| b |
| a |
| b |
=10(k-3)-4(2k+2)
=10k-30-8k-8
=2k-38
=0,
解得k=19.
(2)∵
| a |
| b |
∴k
| a |
| b |
(
| a |
| b |
∵(k
| a |
| b |
| a |
| b |
∴
| k-3 |
| 10 |
| 2k+2 |
| -4 |
解得k=-
| 1 |
| 3 |
点评:本题考查数量积数量积判断两平面向量垂直关系的应用和利用向量的坐标形式判断两平面向量平行的性质和应用,是基础题.解题时要认真审题,仔细解答.
练习册系列答案
相关题目