题目内容

已知向量a=(sin(+),cos),b=(cos(+),-cos),x∈[,π],函数f(x)=a·b.

(1)若cosx=-,求函数f(x)的值;

(2)将函数f(x)的图象按向量c=(M,n)(0<M<π)平移,使得平移后的图象关于原点对称,求向量c.

解:由题意,得?

f(x)=sin(+)cos(+)-cos2?

=sin(x+)-(1+cosx)?

=sinx-cosx-?

=(sinx-cosx)-

=sin(x-)-.                                                                                             ?

(1)∵x∈[,π],cosx=-,∴sinx=.?

f(x)=sinx-cosx-=-.                                                                     ?

(2)由图象变换得平移后的函数为g(x)=sin(x--M)+n-,而平移后的图象关于原点对称,

g(0)=0且n-=0,                                                                                                ?

即sin(M+)=0且n=,?

∵0<M<π,∴M=,即c=(,).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网