题目内容
函数f(x)=xlnx-ax2-x(a∈R).
(I)若函数f(x)在x=1处取得极值,求a的值;
(II)若函数f(x)的图象在直线y=-x图象的下方,求a的取值范围;
(III)求证:ln(2×3×…×2013)
<2013.
(I)若函数f(x)在x=1处取得极值,求a的值;
(II)若函数f(x)的图象在直线y=-x图象的下方,求a的取值范围;
(III)求证:ln(2×3×…×2013)
| 1 | 1007 |
分析:(I)求出函数定义域,f′(x),由f(x)在x=1处取得极值,得f′(1)=0,由此可得a值,然后代入验证;
(II)因为函数f(x)的图象在直线y=-x图象的下方,所以xlnx-ax2-x<-x,即xlnx-ax2<0恒成立,分离参数a后,转化为求函数最值即可;
(III)由(II)知:h(x)≤h(e)=
,所以
≤
,从而有lnx≤
<x,即lnx<x,据此不等式可得ln1<1,ln2<2,ln3<3,…,ln2013<2013,对各式累加,再运用对数运算法则即可证明;
(II)因为函数f(x)的图象在直线y=-x图象的下方,所以xlnx-ax2-x<-x,即xlnx-ax2<0恒成立,分离参数a后,转化为求函数最值即可;
(III)由(II)知:h(x)≤h(e)=
| 1 |
| e |
| lnx |
| x |
| 1 |
| e |
| x |
| e |
解答:解:(I)函数定义域为(0,+∞),f′(x)=lnx-2ax,
因为f(x)在x=1处取得极值,
所以f′(1)=0,即-2a=0,解得a=0,.
所以f′(x)=lnx,
当x∈(0,1)时,f′(x)<0,当x∈(1,+∞)时,f′(x)>0,f(x)在x=1处取得极值.
所以a=0.
(II)由题意,得xlnx-ax2-x<-x,即xlnx-ax2<0恒成立,
因为x∈(0,+∞),所以a>
,
设h(x)=
,则h′(x)=
,
令h′(x)>0,得0<x<e,所以h(x)在(0,e)上为增函数;
令h′(x)<0,得x>e,所以h(x)在(e,+∞)上为减函数;
所以h(x)max=h(e)=
,
所以a>
.
(III)由(II)知:h(x)≤h(e)=
,所以
≤
,所以lnx≤
<x,即lnx<x,
所以ln1<1,ln2<2,ln3<3,…,ln2013<2013,
以上各式相加,得ln1+ln2+ln3+…+ln2013<1+2+3+…+2013,
所以ln(1×2×3×…×2013)<
=2013×1007,即
•ln(1×2×3×…×2013)<2013,
所以ln(2×3×…×2013)
<2013.
因为f(x)在x=1处取得极值,
所以f′(1)=0,即-2a=0,解得a=0,.
所以f′(x)=lnx,
当x∈(0,1)时,f′(x)<0,当x∈(1,+∞)时,f′(x)>0,f(x)在x=1处取得极值.
所以a=0.
(II)由题意,得xlnx-ax2-x<-x,即xlnx-ax2<0恒成立,
因为x∈(0,+∞),所以a>
| lnx |
| x |
设h(x)=
| lnx |
| x |
| 1-lnx |
| x2 |
令h′(x)>0,得0<x<e,所以h(x)在(0,e)上为增函数;
令h′(x)<0,得x>e,所以h(x)在(e,+∞)上为减函数;
所以h(x)max=h(e)=
| 1 |
| e |
所以a>
| 1 |
| e |
(III)由(II)知:h(x)≤h(e)=
| 1 |
| e |
| lnx |
| x |
| 1 |
| e |
| x |
| e |
所以ln1<1,ln2<2,ln3<3,…,ln2013<2013,
以上各式相加,得ln1+ln2+ln3+…+ln2013<1+2+3+…+2013,
所以ln(1×2×3×…×2013)<
| 2013(1+2013) |
| 2 |
| 1 |
| 1007 |
所以ln(2×3×…×2013)
| 1 |
| 1007 |
点评:本题考查利用导数研究函数的最值、极值,考查函数恒成立问题,函数恒成立往往转化为求函数最值解决,而不等式的证明常借助前面结论,如最值等.
练习册系列答案
相关题目
函数f(x)=xln|x|的图象大致是( )
| A、 | B、 | C、 | D、 |