题目内容

设函数f(x)=xln(ex+1)-
12
x2+3,x∈[-t,t]
(t>0),若函数f(x)的最大值是M,最小值是m,则M+m=
6
6
分析:求导函数,确定函数在[-t,t]上单调增,故有:M=f(x)max=f(t),m=f(x)min=f(-t),由此可求M+m的值.
解答:解:求导函数,可得f'(x)=ln(ex+1)-
x
ex+1
=
1
ex+1
[exln(ex+1)+ln(ex+1)-lnex]
又因为当x∈[-t,t]时,ex+1>1>0,又因为ln(ex+1)-lnex>0,所以f'(x)>0恒成立
故该函数在[-t,t]上单调增,故有:M=f(x)max=f(t),m=f(x)min=f(-t)
∴M+m=f(t)+f(-t)=tln(et+1)-
1
2
t2+3-tln(e-t+1)-
1
2
t2+3=3+3=6
故答案为:6
点评:本题考查导数知识的运用,考查函数的单调性,考查函数的最值,确定函数的单调性是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网