题目内容
在数列{an}中,a1=1,an+1=1-
,bn=
,其中n∈N*.
(1)求证:数列{bn}是等差数列,并求数列{an}的通项公式an;
(2)设cn=n•2n+1•an,求数列{cn}的前n项和.
| 1 |
| 4an |
| 2 |
| 2an-1 |
(1)求证:数列{bn}是等差数列,并求数列{an}的通项公式an;
(2)设cn=n•2n+1•an,求数列{cn}的前n项和.
(1)证明:∵bn-1-bn=
-
=
-
=
-
=2(n∈N*)
∴数列{bn}是等差数列
∵a1=1,∴b1=
=2
∴bn=2+(n-1)×2=2n
由bn=
得,2an-1=
=
(n∈N*)
∴an=
(2)由(1)的结论得an=
,∴cn=n•2n+1•an=(n+1)•2n
∴Sn=2•21+3•22+4•23++(n+1)•2n①
2Sn=2•22+3•23+4•24++n•2n+(n+1)•2n+1,②
①-②,得-Sn=2•21+22+23+…+2n-(n+1)•2n+12
=2+2n+1-2-(n+1)•2n+1=-n•2n+1,
∴Sn=n•2n+1
| 2 |
| 2an+1-1 |
| 2 |
| 2an-1 |
=
| 2 | ||
2(1-
|
| 2 |
| 2an-1 |
| 4an |
| 2an-1 |
| 2 |
| 2an-1 |
∴数列{bn}是等差数列
∵a1=1,∴b1=
| 2 |
| 2a1-1 |
∴bn=2+(n-1)×2=2n
由bn=
| 2 |
| 2an-1 |
| 2 |
| bn |
| 1 |
| n |
∴an=
| n+1 |
| 2n |
(2)由(1)的结论得an=
| n+1 |
| 2n |
∴Sn=2•21+3•22+4•23++(n+1)•2n①
2Sn=2•22+3•23+4•24++n•2n+(n+1)•2n+1,②
①-②,得-Sn=2•21+22+23+…+2n-(n+1)•2n+12
=2+2n+1-2-(n+1)•2n+1=-n•2n+1,
∴Sn=n•2n+1
练习册系列答案
相关题目